Digital Communication Systems EES 452

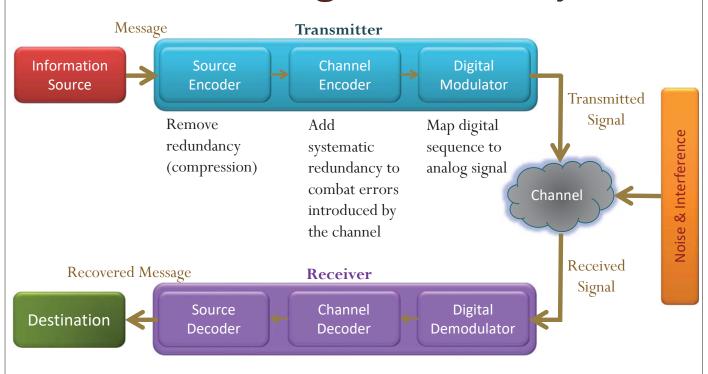
Asst. Prof. Dr. Prapun Suksompong

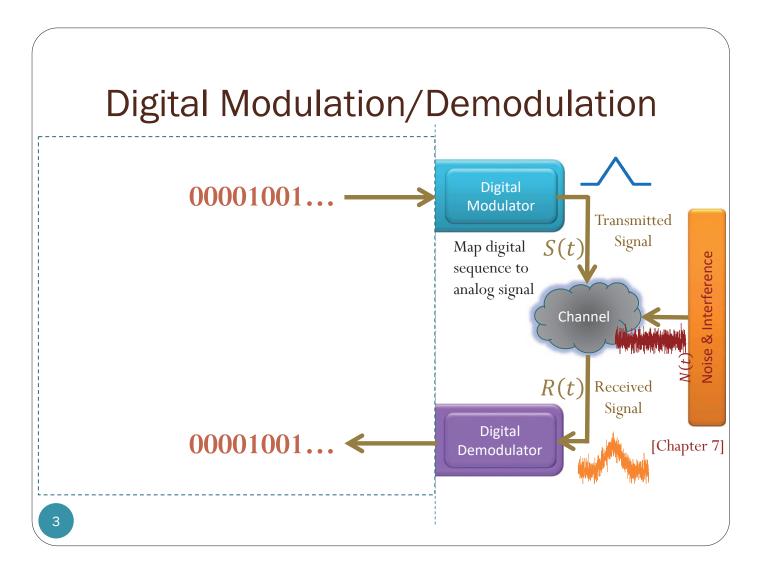
prapun@siit.tu.ac.th

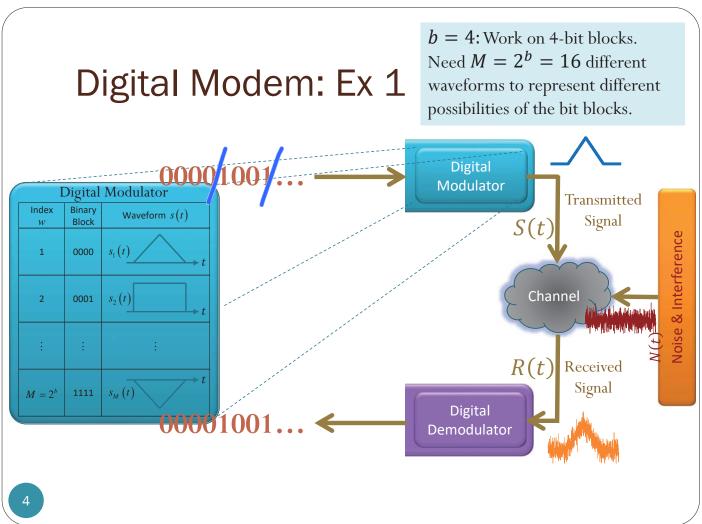
6-7. Waveform Channel and The Conversion to Vector Channel

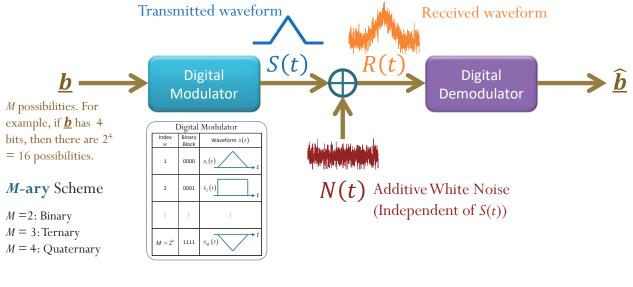
1

Elements of digital commu. sys.





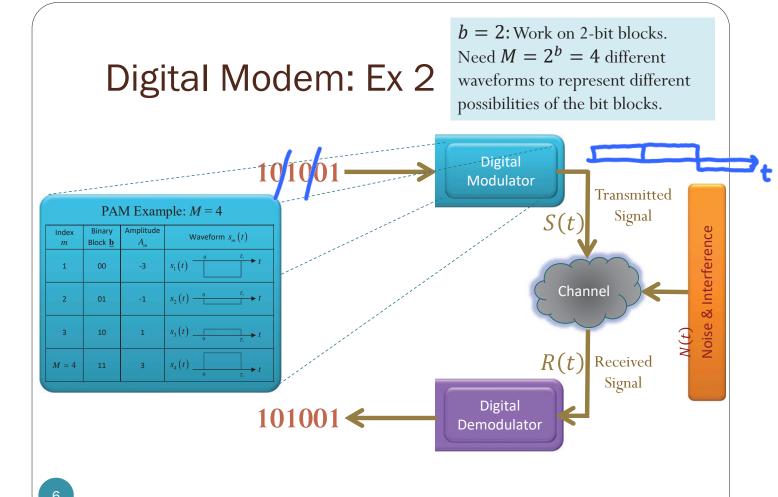




M possible "messages" requires

M possibilities for S(t):

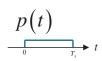
 $\{s_1(t), s_2(t), ..., s_M(t)\}$ We refer to this as the **signal set**



Pulse Amplitude Modulation (PAM)

- Use a common pulse p(t).
 - **Amplitude-Shift Keying (ASK)**: $p(t) = g(t) \cos(2\pi f_c t)$
 - $E_p = \frac{1}{2} E_g$ when g is an energy signal that is bandlimited to $B < f_c$
- The pulse is scaled by M different "amplitudes":

$$s_m(t) = A_m p(t), \quad 1 \le m \le M$$



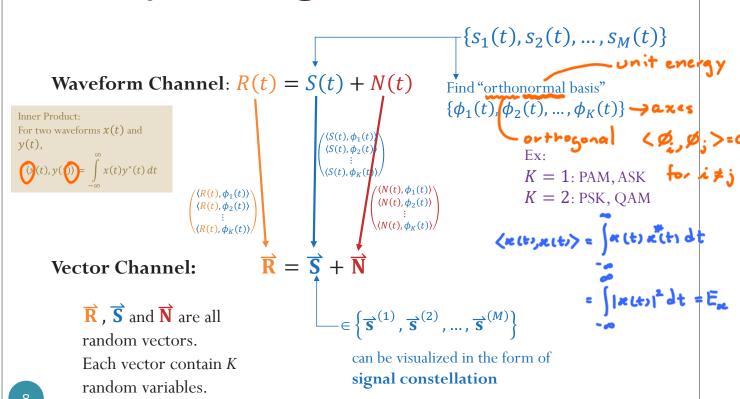
PAM Example: M = 2

Index m	Binary Block <u>b</u>	Amplitude $A_{\!\scriptscriptstyle m}$	Waveform $s_{_{m}}\!\left(t ight)$
1	0	-1	$s_1(t) \xrightarrow{0} \xrightarrow{T_s} t$
<i>M</i> = 2	1	1	$s_2(t) \xrightarrow{0} T_s t$

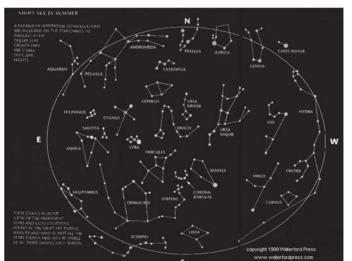
т. Г.				
Index <i>m</i>	Binary Block <u>b</u>	Amplitude $A_{\!\scriptscriptstyle m}$	Waveform $s_m(t)$	
1	00	-3	$S_1(t) \xrightarrow{0} T_s t$	
2	01	-1	$s_2(t) \xrightarrow{0} \xrightarrow{T_s} t$	
3	10	1	$s_3(t) \xrightarrow{0} t$	
M = 4	11	3	$s_4(t)$ t	

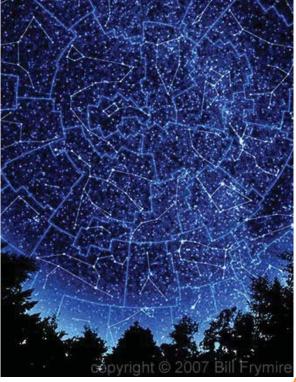
PAM Example: M = 4

Analysis of Digital Modem



Star Constellations





9

Star Constellations

constellation noun [C] UK ♠》 /ˌkɒn.stəˈleɪ.ʃen/ Us ♠》 /ˌkɑːn.stəˈleɪ.ʃen/ any of the groups of stars in the sky that seem from earth to form a pattern and have been given names • English-Thai: NECTEC's Lexitron-2 Dictionary [with local updates] constellation [N] näu constellation [N] näuarn, Syn. group of stars, configuration of stars • English-Thai: HOPE Dictionary [with local updates] constellation [n. nājuarn, See also: constellation adj. • English-Thai: Nontri Dictionary constellation (n.) xujarn, aranneri, aranneri • English-Thai: Nontri Dictionary constellation (n.) xujarn, aranneri, aranneri • English-Thai: Nontri Dictionary constellation (n.) xujarn, aranneri, aranneri • English-Thai: Nontri Dictionary constellation (n.) xujarn, aranneri, aranneri • English-Thai: Nontri Dictionary constellation (n.) xujarn, aranneri, aranneri • English-Thai: Nontri Dictionary constellation (n.) xujarn, aranneri, aranneri • English-Thai: Nontri Dictionary constellation (n.) xujarn, aranneri, aranneri

sololos/E+/GettyImages

กลุ่มดาว, กลุ่มของดาวฤกษ์ที่ปรากฏในท้องฟ้า เคลื่อนที่ไปพร้อมกันเป็นกลุ่ม ๆ เช่นกลุ่มดาวจระเข้ กลุ่มดาวเต่า เป็นต้น

From s(t) to \vec{s}

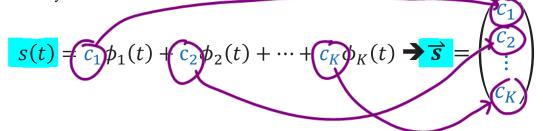
• Orthonormal basis $\{\phi_1(t), \phi_2(t), ..., \phi_K(t)\}$. \Rightarrow axes

$$\langle \phi_i(t), \phi_j(t) \rangle = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

• Suppose we can express a waveform as a linear combination of the ϕ_i :

$$s(t) = c_1 \phi_1(t) + c_2 \phi_2(t) + \dots + c_K \phi_K(t)$$

• Then, the vector representation of this waveform can be found easily from the coefficients in the linear combination:



18

Example: From s(t) to \vec{s}

• Orthonormal basis: $\{\phi_1(t), \phi_2(t)\}$

[12,41]

• Suppose we can express the waveforms as a linear combination of the ϕ_i :

$$s_1(t) = 5\phi_1(t) - 3\phi_2(t)$$

$$s_2(t) = -\phi_1(t) + 2\phi_2(t)$$

$$s_3(t) = 2\phi_1(t) + \phi_2(t)$$

Then, the vector representations of the waveforms can be found easily:

$$s_{1}(t) = 5\phi_{1}(t) - 3\phi_{2}(t) \qquad \Rightarrow \overrightarrow{s}^{(1)} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

$$s_{2}(t) = -\phi_{1}(t) + 2\phi_{2}(t) \qquad \Rightarrow \overrightarrow{s}^{(2)} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$s_{3}(t) = 2\phi_{1}(t) + \phi_{2}(t) \qquad \Rightarrow \overrightarrow{s}^{(3)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Constellation for PAM

• Recall that, for PAM,

$$s_m(t) = A_m p(t), \quad 1 \le m \le M$$

• Let
$$\phi(t) = \frac{p(t)}{\sqrt{E_p}}$$
 where $E_p = \int_{-\infty}^{\infty} |p(t)|^2 dt$.

- Note that $E_{\phi} = \int_{-\infty}^{\infty} |\phi(t)|^2 dt = 1$.
- Then,

$$s_m(t) = A_m \sqrt{E_p} \phi(t) = s^{(m)} \phi(t), \quad 1 \le m \le M$$

11

PAM in the Vector Channel

$$R = S + N$$

The points are chosen randomly (according to the bits that are fed into the digital modulator) 100 times.

Add noise

@ Rx

Phase-Shift Keying (PSK)

Digital phase modulation

$$s_m(t) = g(t) \cos(2\pi f_c t + \theta_m), \quad m = 1, 2, ..., M$$
• $g(t)$ is the signal pulse shape

- $\theta_m = \frac{2\pi}{M}(m-1)$ represents phase of the carrier that convey the transmitted information. cos(A+0) = cosAcos B - sin AsinB
- Let

$$\phi_1(t) = \sqrt{\frac{2}{E_g}}g(t)\cos(2\pi f_c t) \text{ and } \phi_2(t) = -\sqrt{\frac{2}{E_g}}g(t)\sin(2\pi f_c t).$$

- $\langle \phi_1(t), \dot{\phi_2}(t) \rangle = 0$ (orthogonal) under appropriate condition $\langle \phi_1(t), \dot{\phi_2}(t) \rangle = 0$
- $E_{\phi_i} = \int_{-\infty}^{\infty} |\phi_i(t)|^2 dt = 1.$
- Then,

$$s_m(t) = \sqrt{\frac{E_g}{2}} \cos(\theta_m) \, \phi_1(t) + \sqrt{\frac{E_g}{2}} \sin(\theta_m) \, \phi_2(t).$$

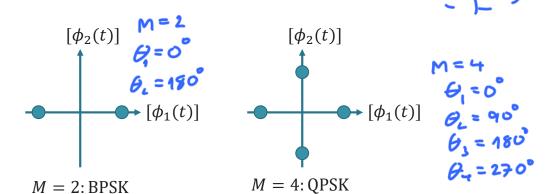
Constellations for PSK

Waveform:

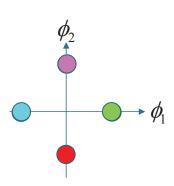
$$s_m(t) = \sqrt{\frac{E_g}{2}}\cos(\theta_m)\,\phi_1(t) + \sqrt{\frac{E_g}{2}}\sin(\theta_m)\,\phi_2(t). \quad [3]$$

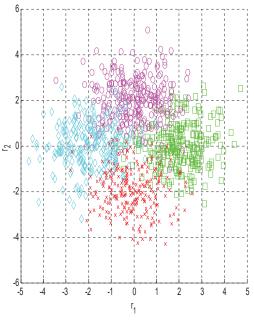
Vector:

$$\vec{\mathbf{s}}^{(\mathrm{m})} = \left(\sqrt{\frac{E_g}{2}}\cos(\theta_{m}), \sqrt{\frac{E_g}{2}}\sin(\theta_{m})\right).$$



4-PSK in the Vector Channel





$$\overrightarrow{R} = \overrightarrow{S} + \overrightarrow{N}$$

Quadrature Amplitude Modulation (QAM)

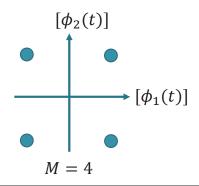
• Waveform:

$$\begin{split} s_m(t) &= A_m^{(I)} a(t) \cos(2\pi f_c t) - A_m^{(Q)} g(t) \sin(2\pi f_c t) \,, \quad m = 1, 2, \dots, M \\ &= A_m^{(I)} \sqrt{\frac{E_g}{2}} \phi_1(t) + A_m^{(Q)} \sqrt{\frac{E_g}{2}} \phi_2(t) \quad \text{same define a, in PSK} \end{split}$$

• Vector:

$$\vec{\mathbf{s}}^{(\mathrm{m})} = \left(A_m^{(I)} \sqrt{\frac{E_g}{2}}\right) A_m^{(Q)} \sqrt{\frac{E_g}{2}}$$

$$A_{m}^{(1)} \in \{\pm 1\}$$
 $A_{m}^{(Q)} \in \{\pm 1\}$



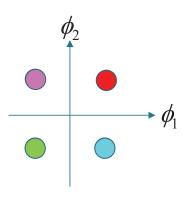
$$[\phi_{2}(t)] \qquad A_{m}^{(1)} \in \{\pm 1, \pm 3\}$$

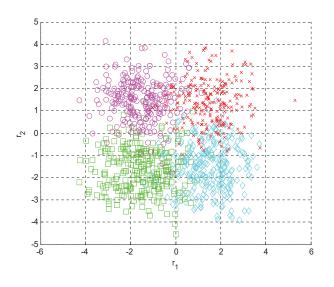
$$A_{m}^{(0)} \in \{\pm 1, \pm 3\}$$

$$[\phi_{1}(t)]$$

$$M = 16$$

4-QAM in the Vector Channel





$$\vec{R} = \vec{S} + \vec{N}$$